Calibrating Device Simulators

ATLAS
Device Simulation Framework
Sources of Error in Device Simulation

- Inaccurate doping profiles
- Insufficient physics
- Unknown or inaccurate material parameters
- Inaccurate model parameters
- Reliance on empirically fitted models
- Mesh induced errors
- External effects
Solving Doping Profile Errors

- This is the largest source of error for ‘small geometry devices’
 - Apply correction to doping if using SRP results
 - Use a process simulator
 - Account for CD biasing in mask edge locations
 - For further information see “Calibrating Process Simulators”
Solving Material Parameter Errors

- Silicon parameters generally well-tuned already
- For non-silicon materials, all parameters are subject to tuning
- Some parameters are substrate dependent and MUST be tuned
 - e.g. minority carrier lifetime
- Some parameters are process dependent
 - e.g. Qss
Solving Model Parameter Errors

- Remember that most models are empirically fitted to a particular set of data
- Should be used only after other errors are handled
- Most common parameters used are VSAT for saturation region tuning and Impact Ionization parameters for breakdown
Solving Mesh Errors

- Avoid obtuse triangles in the current path or high field areas
- Avoid discontinuities in mesh density
- Ensure adequate mesh density in high field areas
You are trying to compare measured data so you must understand your measurement system. The simulation is of a ‘perfect intrinsic device structure.”

- External resistances
 - Long tracks in street structures, substrate contacts
- Temperature. Simulator uses 300K. Do you?
- Test systems use transients. Can be important for some device effects
- Variations in measured data. Best to tune to a curve of data rather than a single point
- Ensure extraction technique is the same
 - e.g. at least 4 ways to get MOS Vt
How to Tune Device Simulators

- Problem
 - too many parameters to change
- Run many simulations
 - slow and tedious
- Use Optimizer™
 - easier, but may not converge in difficult cases
- User VWF™
 - currently only available if using parameterized input decks
How to Tune Device Simulators (cont.)

- Tactic
 - Eliminate or account for external effects
 - Measure what you can first to eliminate variables in the tuning
 - Thoroughly check all process related information
 - Use ‘unknown’ material parameters first
 - Use ‘major’ model parameters such as VSAT
Example 1: MOS Threshold

- Only 5 things affect a MOSFET threshold and you can tackle them individually to tune the simulator
 1. Doping profile (use tuned process simulator)
 2. Gate workfunction (is poly degenerately doped or not?)
 3. Surface states (controlled by QF parameter)
 4. Gate oxide thickness (input value from measurement)
 5. Short channel effects (drain doping profile)
Example 1: MOS Threshold (cont.)

- **Tactic**
 - Eliminate 5 by tuning to large channel length device first
 - Check 2 and measure 4 accurately to eliminate these
 - Tune 1 until result is close measurement
 - 3 has only small effect so can be used to apply final changes
 - Once large device is tuned, check 5. Probably need tuning in process simulator
Example 2: Bipolar Gain

Many things affect this result. The most important are:

1. Doping profile (use tuned process simulator)
2. Correct physical models (use Models Bipolar)
3. Recombinations (TAUN0, TAUP0 and Auger parameters AUGN, AUGP)
4. Extrinsic resistances

Tactic

- Set correct models 2
- Measure 4 and add in if necessary
- Check 1 by tuning to collector current in Gummel plot
- Alter base current and hence gain by tuning using 3
Example 3: Diode Breakdown

- Could be MOSFET drain/substrate or Bipolar base/emitter. For good breakdowns set Method CLIMIT=1e4'
 - 1. Doping profile (use tuned process simulator)
 - 2. Correct physical models (may need tunneling at high doping)
 - 3. Impact ionization model coefficients (IMPACT SELB)
 - 4. Meshing
- Tactic
 - Set correct models 2
 - Ensure you follow the rules for good mesh
 - Check 1 by SRP or tuning to forward behavior
 - Run impact and use impact parameters (AN1/AN2 for e- AP1/AP2 for h+)
Example 4: HBT Gain

- 1. Doping profile
- 2. Uniform or Graded Mole Fractions
- 3. Energy band structure
- 4. Physical models
- 5. Recombination parameters

Tactic
- use DevEdit to specify 2
- modify energy bands using ALIGN or electron affinities
- choose 4 for different materials
- check 1 by tuning to collector current
- alter base current by tuning 5
Wachutka’s model of lattice heating accounts for
 - Joule heating
 - Heating/cooling from generation and recombination
 - Peltier and Thomson heating
Lattice heating is required for many reasons
 - high power devices
 - ESD protection devices
 - SOI device operation
 - III-V material systems
 - bipolar carrier injection processes
 - accurate impact ionization
 - external heat sources
There are four additional calibration requirements when simulating lattice heat flow:

1. Temperature dependent physical models
2. Temperature dependent thermal conductivities
3. Temperature dependent heat capacities
4. Thermal boundary conditions

Tactic

- choose correct models 1
- control material heating by 2
- transient heat flow control with 3
- apply external heat sources/sinks 4
Energy balance simulations are required for today's technologies:

- deep sub-micron CMOS transistors
- advanced high mobility materials
- accurate substrate current modeling
- velocity overshoot effects
- gate leakage currents
- transconductance modeling
- nonlocal transport phenomena

Tuning Energy Balance Equations

The relaxation times of the energy balance equations are the critical parameter but are difficult to measure.

1. Energy relaxation times
2. Energy dependent mobilities
3. Temperature dependence of relaxation times
4. Energy dependent impact ionization

Tactic

apply previous drift-diffusion calibration strategies
modify 1 to control velocity overshoot
2 is then coupled to 1
3 is uncharacterized but implemented for research purposes
specify energy relaxation length for 4
Examples of Calibration Parameters

- Threshold Voltage
 - Gate workfunction (WORKF)
 - Surface states (QF)

- Subthreshold Slopes
 - Surface states (QF)
 - Interface defect traps
 - Discrete Bulk defect traps
 - Distributed bandgap defect traps

- Theta
 - Physical models (MOS)
 - Mobility equations coefficients (DELTAN.CVT)

- Bipolar Gain
 - Physical models (BIPOLAR)
 - Mobility equations coefficients (MUN, MUP)
 - Recombination coefficients (TAUN0)
 - Extrinsic resistances (RESISTANCE)
 - Surface recombination (SURF.REC)
Examples of Calibration Parameters (cont.)

- **I - V Curves**
 Physical models (MOBILITY, BGN) MODELS
 Mobility equations coefficients (VSAT) MOBILITY

- **Leakage Currents**
 Physical models (TUNNELING) MODELS
 Recombination coefficients (TAUN0) MATERIAL
 Trap density (see subthreshold slope)

- **Breakdown**
 Current level (Vt, Theta, Gain, etc) IMPACT
 Impact ionization coefficients (SELB, AN1, BN1)

- **EPROM Write/ Erase**
 Floating contacts (FLOATING) CONTACT
 Physical models (PROGRAM, ERASE) MODELS
 Tunneling equation coefficients (IG. ELINR) MODELS
 Coupling capacitances CONTACT
Examples of Calibration Parameters (cont.)

- **Lattice Heating**
 - Physical models (LAT.TEMP) MODELS
 - Thermal conductivities (TC.A, TC.B, TC.C) MATERIAL
 - Heat capacities coefficients (HC.A, HC.B, HC.C) MATERIAL
 - Thermal boundary conditions THERMCONTACT

- **Energy Balance**
 - Physical model (HCTE) MODELS
 - Relaxation times (TAUREL.EL) MATERIAL
 - Impact ionization coefficients (LREL.EL) IMPACT
Conclusion

- Calibration may be necessary when comparing measured data to simulated data
- Using a process simulator can increase the accuracy of doping profiles
- A good quality mesh is required in high field and high current areas
- Always use appropriate physical models